How complex can the 'shape' of expectations be? Investigating error distributions under skewed priors.

Syaheed B. Jabar & Daryl Fougnie New York University Abu Dhabi, Department of Psychology

Question: How sensitive are people to complex-shaped priors, and can they be cued in a trial-by-trial manner?

1) Real world distributions can be complex and non-Gaussian, but previous research claims that people make Gaussian approximations

(Dakin & Watt, 1997; Rosenholtz, 2001)

2) Sensitivity to skewed distributions demonstrated only in priming studies

(Chetverikov, Campana, & Kristjánsson, 2016)

Paradigm

Expectations/priors are cued at response

Conditions / Prior cues

- 1) Cue type and mode/*mu* randomly selected per trial
- 2) Height of color indicate relative probability

Experiment 1: Differences between Gaussian and Skewed Priors (stimuli sampled from cued prior)

1) The cues were effective: The non-uniform priors all caused biases in responses towards the mu, as well as increasing precision (reduction in spread of errors)

2) Shape of cue communicated to participants changes the shape of error distributions

جامعة نيويورك أبوظبي **VIV ABU DHABI**

Model assumptions:

- 1) Internal uncertainty (estimated from Uniform trials) is relatively stable across trials
- 2) Expected error distribution across trials is the sum of expected error distribution for each trial
- 3) Internal representation on any given trial is a Bayesian convolution of the prior and internal uncertainty

General Conclusions

1) People are sensitive to and can utilize complex statistical information such as skew in their decisions

This integration of statistical information happens in a **Bayesian – or at least Bayesian-like – manner**

2) These complex expectations are picked up quickly: Even a single cue is sufficient to *impact the shape of error distributions*