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Expectations about the environment play a large role in shaping behavior, but how does this occur? Do
expectations change the way we perceive the world, or just our decisions based on unbiased percep-
tions? We investigated the relative contributions of priors to these 2 stages by manipulating when infor-
mation about expected color was provided. We compared cases where the prior could affect encoding
into perceptual/working memory representations (e.g., when provided prestimulus) against cases where
it could not (e.g., when given at response after a delay). Although priors had a minor influence on
encoding, the bulk of the effects were at decision-making. Furthermore, these effects appeared to be
distinct. The effect on decision-making was Bayesian-like, with priors inducing bias while improving
precision. In contrast, the same priors at encoding improved precision without causing changes in bias.
Priors do not just affect encoding or decision-making, but appear to affect both, via distinct
mechanisms.
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Imagine being asked to select, from a color palette, the color of
the last stop sign that you saw. Odds are that you are going to be
biased toward the prototypical red associated with such signs,
even if the last exemplar observed happened to be atypical.
Although biases toward our expectations are commonly observed
in perceptual decision-making (Ma et al., 2006; Summerfield & de
Lange, 2014; Summerfield & Egner, 2016; Wei & Stocker, 2015),
the mechanisms that lead to such effects are unclear.
One possible mechanism is that expectations affect how infor-

mation is perceptually encoded by changing the specificity or sen-
sitivity of neural responses in visual cortex (de Lange et al., 2018;
Summerfield & de Lange, 2014; Zhou et al., 2020). Indeed,
repeated exposure to a stimulus has been shown to change neural
firing patterns in visual cortical areas (Schoups et al., 2001), sug-
gesting that expectations do alter perceptual encoding. Further-
more, this can happen in a fast timescale, even within a single
session, because imbalances of stimuli (e.g., Gabors with differ-
ing orientation probabilities) can be shown to affect V1 activity
and result in increased precision of perceptual estimations (Jabar
et al., 2017). Computationally, having information flow through
probabilistic population codes in the visual cortex is sufficient to

mimic Bayesian decision-making (Beck et al., 2008) and other
models of informed decision-making, for example applying effi-
cient coding (Wei & Stocker, 2015) or attractor dynamics (Bitzer
et al., 2015) also assume changes in population codes that are
associated with perception or sensory representation. Expecta-
tions induced by explicit cues (rather than acquired though
piecemeal experience) can also produce changes in visual cortex.
For example, if informative auditory cues are provided before
(visual) stimuli, it results in representational changes in the vis-
ual cortex (Kok et al., 2013; Kok et al., 2014; Kok et al., 2012).
Magnetoencephalogram studies also show that auditory cues can
modulate early visual processing (e.g., Shams et al., 2005).
These studies therefore suggest that within-trial cues can also
affect perceptual encoding.

An alternate hypothesis is that the effects of priors are on
decision-making. For instance, judging the absence/presence of
Gabor orientations, clearly a perceptual task, is nonetheless affected
by nonperceptual information, such as reward (Summerfield &
Koechlin, 2010). It could be that in perceptual tasks that probability
distributions are encoded by the cortex, but are only collapsed onto
estimates when decisions are needed (Ma et al., 2006). Bang and
Rahnev (2017) attempted to study the effect of expectations on sen-
sory processing versus decision-making using a task where partici-
pants had to make a choice about whether the average of a series of
Gabor orientations were clockwise or counterclockwise from verti-
cal. Participants were provided cues about the likely correct
response (left or right) either before or after the stimulus, with the
result that the postcue accounted for all the effects of the precue.
Accordingly, they concluded that stimulus expectations affect deci-
sion criteria rather than sensory representations, which is in line
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with other studies arguing that expectations do not alter early sen-
sory processing/encoding (Rungratsameetaweemana et al., 2018;
Rungratsameetaweemana & Serences, 2019).
How do we reconcile the hypothesis that priors affect encoding,

with the hypothesis that priors affect decision-making1? One issue
is that the Bang and Rahnev (2017) task involved explicitly cuing
the response dimension, which only indirectly provided informa-
tion about the likely stimuli. Under such conditions, it is perhaps
not surprising that a cue during decision would have a strong
effect. The present study adopts a similar pre- and postcue manip-
ulation within a delayed perceptual matching task, but where cues
would inform participants of the exact stimulus distribution. Fur-
thermore, the influence of expectations can have dissociable
effects on behavior: It can bias responses toward the expected
value and/or take advantage of the additional information to make
responses more precise (both are expected if participants are acting
in a Bayesian manner; Geisler, 2011). The relative contribution of
pre- and postcues on the precision and bias of responses has not
been examined in previous studies. We therefore had participants
use a continuous report, which allowed us to separate bias and
precision of responses (see Figure 1; Zhang & Luck, 2008). We
expected that color estimations should not only be biased toward
the prior, but that estimation should also be more precise overall
(Figure 1c). To preview our findings, we found dissociable
influences of expectation at prestimulus and poststimulus stages.
When prior information is available at response, estimates become
more accurate and are biased toward the expected value, consistent
with Bayesian-like inference. Unlike the Bang and Rahnev study,
we also found a small additional benefit of priors during stimulus
presentation (but this benefit was found to improve quality in a
nonbiased manner). Our results suggest that expectations need not
have a singular effect, and that they influence both encoding and
decision-making in distinct ways.

Experiment 1: Effects of Response Priors

Is the introduction of a prior after perceptual encoding sufficient
to produce changes in behavior? If the bulk of the effects of priors
are on perceptual encoding, then priors given only at response
should produce considerably smaller changes in behavioral
performance compared to showing the same prior at prestimulus.
Otherwise, if the bulk of the effects of priors are due to postper-
ceptual/decisional process, then response priors should have an
effect on performance with the addition of prestimulus priors con-
tributing little to no additional performance benefits. We therefore
compare the condition where participants are given no priors,
versus only given priors at response, versus given the prior both
prestimulus and at response.

Method

Participants

Based on a pilot study (within-subjects, n = 11), we found that a
no-prior condition (M = 17.3°, SD = 6.7°) had significantly larger
raw errors than response prior condition (M = 15.5°, SD = 6.2°)
compared to a response prior condition, t(11) = 2.72, p = .022.
Sampling from this data, the null hypothesis was rejected (alpha

cutoff of ,.05) at least 80% of the time when the sample size was
19 or higher. Therefore, twenty naïve participants (three male, 17
female, median age = 19.5) were recruited for Experiment 1.

Participants had normal or corrected-to-normal vision and
declared normal color vision. Participants were recruited at New
York University Abu Dhabi and took part either for course credits,
or for a subsistence allowance of 50AED per hour. Written con-
sent was obtained from each participant before the experiments.
The experiments were approved by the New York University Abu
Dhabi Institutional Review Board.

Apparatus and Stimuli

Stimuli were presented on a color-calibrated 24” BenQ XL2411
monitor (144 Hz refresh rate, 1,920 3 1,080 pixels), placed 57 cm
away from the participant. All experiments reported here were
coded in Matlab using the Psychophysics Toolbox (Brainard,
1997; Kleiner et al., 2007). The background of the screen was
black (0.1cd/m2) throughout the experiments, and room lighting
was dim. A white (89cd/m2) fixation cross was used, spanning
1.5° visual angle in both height and width. Cues used as priors
were Gaussians (standard deviation of 30°) comprising of 360
color bands of tapering height (each band corresponds to an inte-
ger value of color orientation). We chose a prior width of 30° to
maximize the effect of priors. Given an expected uncertainty of
approximately 30° in memory, prior widths between 30° to 40°
lead to the maximum bias toward the target. We chose the minimal
end of this so that participants can more easily tell the differences
in height (Gaussian approaches uniform as its standard deviation
increases). This cue was also shown mirrored across the horizontal
axis to emphasize the height differences more (e.g., instead of a
Gaussian, it was a lens shape). Crucially, the height of the color
bands accurately indicated the relative likelihood of that specific
color (see, e.g., Figure 2). The cues were centrally located and
were of maximal luminance (25cd/m2) and height (1.5° visual
angle) at the midpoint (which indicated the center of the prior).
The visible horizontal span of the cue was approximately 8° visual
angle. The targets and the response color wheel were located 8.3°
away from fixation diagonally (displaced in the x- and y-axes
by 5.9°). The response wheel occupied approximately 8° visual
angle, while each target occupied approximately 2.2°. The mean
color of each of the four targets on a trial were independently
drawn from the same 30° prior in color space, even if the prior
was not communicated to the participant (i.e., in the control condi-
tion). This was to ensure no differences in stimulus properties
across conditions. To increase stimulus noise/uncertainty, for
each individual target, pixels were randomly resampled from a
Gaussian distribution of 30° around that target’s mean color. This
was done as the effect of priors are expected to increase as stimu-
lus uncertainty increases (Geisler, 2011). The colors for the cue,
the color wheel, and for the targets were isoluminant (approxi-
mately 25cd/m2) and sampled from the MemToolbox (Suchow
et al., 2013) color space.

1 By “encoding,” we do not distinguish between perceptual or memory
encoding. The key distinction here is whether it is these encoding
processes, or later post-encoding “decision-making” processes (which may
include processes such as working memory retrieval) that are responsible
for the effects of expectations or “priors”.
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Procedure

Once written consent was obtained, participants were instructed
that depending on the trial, the cues might either be given only at
response, or both at response and prestimulus, or not at all. It was
also made clear to the participants that the height of the cue corre-
sponded to the likelihood of the target colors on that trial, and that
while colors outside of the span of the visible cue were unlikely,

they were nonetheless possible. Participants were instructed to be
as precise as possible, and that the cash bonus was tied to their per-
formance. Participants were given 20 practice trials to familiarize
themselves with the task, and then were given three blocks of
one hundred trials each, with breaks in-between. Each block corre-
sponded to a different condition and block order was counterbal-
anced across participants.

Figure 2
General Paradigm

Note. a: Participants began with a central prior cue, the height of which is indicative of the likelihood of the
color. In the case where there is no prior to be given, for example, in the control condition, the cue was repre-
sented in gray. The four targets appeared 500 ms after the cue was clicked, for a duration of 100 ms. This was
followed by a delay of 2,000 ms. Thereafter, the cue appeared again, and one of the four circles (equiprobable)
was filled with a color wheel, which indicated the to-be-reported location. Participants used a mouse to click
on the color of the wheel to make their estimates. Participants then moved the mouse away from the point of
click to extend a confidence arc (zoom-in is for illustration only, sizes of stimuli appear fixed on-screen). The
participant then obtains points depending on the size of the confidence arc drawn. b: The possible cue combina-
tions. Note that even in the control condition, while the prior might not be advertised, the four dots were still
drawn from a 30° Gaussian distribution centered on some random color. Also note that the prestimulus prior
condition only appears in Experiment 2 and 4.

Figure 1
Sample Error Distributions

Note. Positive error (x-axis) indicates a bias towards the prior. Red (dark gray) indicates a sam-
ple control distribution, mustard (lighter gray) indicates the modified version of the control distribu-
tion. a: Error distribution predicted by a change in bias only. b: Error distribution predicted by a
change in precision only. c: Error distribution predicted by an optimal Bayesian observer (see the
online supplementary material). Note how the Bayesian process will result in both a change in bias
as well as a change in distribution width. See the online article for the color version of this figure.
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Each trial began with a self-paced prior cue (the prestimulus
prior). Participants were given as long as they desired to look at
the prior, and they initiated the trials by clicking on the middle of
the prior. This is followed by 500 ms (72 frames) of a black
screen with a central fixation cross. The four stimuli then appeared
simultaneously for approximately 100 ms (14 frames). This was
followed by another blank screen with a fixation cross for 2,000
ms. A color wheel then appeared in one of the fours target loca-
tions randomly (spatial probability is equiprobable), and partici-
pants were to use the mouse cursor to click on what they thought
was the color of the target that was in that cued location. The
central part of the color wheel started off as white and then was
updated to reflect the current choice that the participants were hov-
ering over (see Figure 2a). Once the first click registered, partici-
pants were given the opportunity to draw a confidence arc over the
region of the color they thought they saw. For example, if they
were confident that they saw a particular shade of green, they
could just draw a narrow arc. If they were unsure, they were told
to make the arcs larger. Participants locked-in their responses with
a second click. Arcs were always centered on the initial point of
estimation (the first click). Participants were made to draw these
arcs as this method could be used to gauge implicit confidence
(Honig et al., 2020).
After the confidence estimate, participants were given visual

feedback about the trial. Points were awarded on each trial.
Maximum points per trial was 180, with points deducted based on
the size of the confidence arc. For example, if the target were
within the confidence arc, spanning 20°, the participant would
have gotten 160 points for that trial. No points were awarded if the
correct answer fell outside the arc. The optimal play for partici-
pants to obtain the maximum points is therefore to both be as pre-
cise as possible in making their estimate, as well as minimizing
their confidence window when they were certain of what they
encoded (Honig et al., 2020). Both the cumulative and points
earned on-trial was shown on-screen, and participants were
informed beforehand that the points earned scaled to performance
and would be translated to bonus money that they could earn. Per-
formance that averaged to 90 out of the maximum 180 points
earned no bonus. Maximum bonus was 25 AED. This performance
scaling was to maintain the motivation to be as accurate as
possible.

Data Analysis

For data analysis, we first examined overall report error across
conditions. However, error differences could arise from changes in
bias or precision. Bias was determined, for each condition, by tak-
ing the magnitude of the errors of each trial and assigning a sign
depending on whether the error was closer to (positive) or further
away (negative) to the (central value of the) prior than it should
be. The median of these signed errors was then taken. As with
other perceptual matching tasks (e.g., Anderson, 2014), to estimate
precision independent of bias the errors were adjusted by the over-
all condition bias (via a subtraction), and then the median absolute
error was estimated. Simulations on the width and shifting of
Gaussian distributions (e.g., those used to generate Figure 1) show
that this type of analysis accurately returned the original Gaussian
parameters. Model-free analyses were used as the main analysis

since these measures makes fewer assumptions than model-based
approaches.2

Importantly, we also conducted analyses using a mixture model-
ing approach and found no qualitative differences between the two
approaches (see the online supplementary material). Furthermore,
estimates of guess responses were small, arguing against the need
of an analysis approach aimed to separate guess from nonguess
response contributions.

Results

An alpha cutoff of p, .05 is used for the pairwise t-tests. Bayes
Factor3 (BF) analyses were also done for these tests (using the
BayesFactor package; Morey et al., 2015) to determine how
strongly the data favor null or alternative hypotheses.

Raw Error

Based on the raw errors (before calculating bias/precision,
Figure 3b) there was a (nonsignificant) trend toward larger errors
in the control condition (where no priors were given; M = 20.2°,
SD = 5.5°) compared to the response prior condition (providing
the prior at response only, M = 18.9°, SD = 3.4°), t(19) = 1.18,
p = .252, h2 = .07, BF = 1.25). Errors were significantly larger
in the control than both priors condition (providing the prior
prestimulus and at response, M = 17.7°, SD = 4.6°), t(19) = 2.39,
p = .027, h2 = .23, BF = 5.92). There was no significant difference
in error between the Response Prior condition and the both priors
condition, t(19) = 1.67, p = .110, h2 = .13, BF = .54. At the very
least, this suggests that the introduction of priors can result in a
decrease in overall error compared to the control condition. How-
ever, the error data are ambiguous on whether adding a prestimu-
lus prior had an effect.

Bias Toward the Prior

Simply looking at the raw errors does little to dissociate effects
on bias from effects on precision. For example, Figure 3a, which
depicts the error distribution, is clearly suggesting that the presence
of the prior cues is causing a shift in bias toward the prior. Using
the calculation outlined earlier, we found that there was a larger
bias in the response prior condition (M = 9.3°, SD = 6.1°) than in
the control condition (M = 2.5°, SD = 4.6°), t(19) = 4.81, p , .001,
h2 = .56 BF = 158). The both priors condition (M = 9.9°, SD =
6.7°) was also significantly more biased toward the prior than the
control condition, t(19) = 5.53, p , .001, h2 = .63, BF = 248. The
response prior condition did not significantly differ from the both
priors condition, t(19) = .61, p = .549, h2 = .02, BF = .27.

This suggests, first, that priors given at response are sufficient to
cause a bias. Second, having the same prior additionally be avail-
able to affect encoding does not contribute additional bias.

2 For example, do we assume a fixed precision or variable precision
model? (Fougnie et al., 2012; Shen & Ma, 2019; van den Berg et al., 2012).

3 Bayes factors can be used to compare any two models to each other,
for instance an alternative to a null model (Rouder et al., 2009). Any value
above 1 reflects evidence for the model in the numerator, while any value
below that reflects evidence for the model in the denominator. The
commonly used guidelines of BF . 3 or BF , .33 was adopted in this
study as the criteria of evidence for either model.
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Precision (Bias-Adjusted)

Because a Bayesian prior predicts not only an increase in bias
(Figure 1c) but also precision, we also analyzed the spread of
responses around the bias to determine if the prior influenced the
amount of uncertainty. The control condition (M = 19.3°, SD =
5.3°) was not significantly more or less precise than the response
prior condition (M = 17.5°, SD = 3.8°), t(19) = 1.63, p = .119,
h2 = .13, BF = 2.17. The control condition was significantly less
precise than the both priors condition though (M = 16.0°, SD =
3.3°), t(19) = 3.50, p = .002, h2 = .41, BF = 75.2. The response
prior condition was marginally associated with less precision
than the both priors condition, t(19) = 1.95, p = .066, h2 = .17,
BF = 1.12. In sum, although it is clear that priors can improve
precision, it is unclear from this experiment what are the
relative contributions of the prestimulus and response priors to
this effect.

Confidence-Arc Sizes

Although the original intent of having the arc sizes drawn was
to obtain a measurement of implicit confidence, we found no
significant difference between the three conditions: control (M =
49.9°, SD = 8.9°), response prior (M = 48.2°, SD = 8.9°), both
priors (M = 48.8°, SD = 9.7°), all ps . .05. This lack of arc size
effects extends to the other experiments as well, and as such will
not be further reported on. Either priors do not affect implicit

confidence, or more likely, this measurement was too insensitive
to capture differences in confidence levels.

Discussion

The introduction of priors results in a clear Bayesian-like effect
(compare to Figure 1c to 3a), with estimates being both biased to-
ward the prior. Of interest though is whether there is a benefit to
introducing a prior prestimulus so that the prior can influence the
encoding process, or whether showing the prior after perception, at
response is sufficient to produce effects typical of priors. When
errors were broken down into bias versus precision, we found no
evidence that responses were more biased toward the prior. In fact,
the Bayesian analysis found supporting evidence that adding the
prestimulus prior did not create additional bias effects.

The results also suggest that priors could led to more precise
responses. The evidence was inconclusive on whether this might
be due to the prior at decision alone or whether the addition of pri-
ors at encoding boosted this effect. One possibility is that there is
a small benefit on precision from encoding priors, and that this is
difficult to observe relative to the benefits from decision priors.
Indeed, a bootstrap simulation on our data suggested that to
observe a significant additional prior effect (both priors vs.
response prior, p , .05) at least 80% of the time on response pre-
cision would require data from approximately 80 participants.
This question of priors at encoding is addressed later in the

Figure 3
Experiment 1 Results

Note. a: Error distribution across participants. Each participant’s errors per condition was put though a kernel
density fit, and we calculate the mean density across participant at each possible integer value of error. Positive
error (x-axis) indicates a bias towards the prior. b: Raw errors (°) for the three conditions. These errors were
split into (b) bias and (c) precision errors. Red denotes the control condition, green denotes the response prior
condition, and blue denotes the both priors condition. Error bars indicates one standard error, and the markers
indicate the means across subjects.
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paper. First, we address potential confounds with Experiment 1’s
design.
Experiment 2 was designed to deal with the concern with that

participants may not have focused on the prestimulus prior since it
was redundant with the response prior. In Experiment 1, the presti-
mulus prior would always reappear during the response stage, and
this may have led participants to discount or completely ignore the
information. Hence, we tested a case where sometimes only the
prestimulus prior was shown, and we randomized conditions
within blocks to make it impossible to predict whether a prior
would reappear at response, in order to encourage participants to
use the prestimulus prior.

Experiment 2: Mixed Blocks and the Effects of the
Prestimulus Prior Alone

To ensure that exactly half of the trials had a prestimulus prior,
the Prestimulus Prior only trial type was introduced (for a total of
four trial types) and conditions were randomized within blocks.
This also had the benefit of allowing us to directly compare the
effect of the prestimulus prior to that of the response prior. If pri-
ors do not affect perceptual encoding, then the effects of the presti-
mulus prior should be approximately equal to the effect of the
response prior, on the assumption that previously shown priors
would not be forgotten at the time of test.

Method

Twenty additional participants (14 male, six female, median age =
22) were recruited for Experiment 2. Apart from the introduction of
the prestimulus prior condition and that the trials were mixed rather
than blocked, all details of Experiment 2 were identical to Experi-
ment 1. The mu of the priors were randomly selected every trial.

Results

A graphical depiction of the raw error, bias and precision results
is given in Figure 4b–4d. Figure 4a shows the distribution of
errors, with errors toward the prior coded as positive. Because of
the large number of possible comparisons (six pairwise compari-
sons for each set of analyses) we made an a priori decision to only
compare the conditions that bear directly on our hypotheses (e.g.,
whether the addition of prestimulus priors causes an effect over
and above response priors). Those interested in additional compar-
isons can look at Table 1 where we list the statistics for a larger-N
replication of this study (Experiment 4).

Raw Error

The control condition showed (M = 23.0°, SD = 8.0°) signifi-
cantly larger errors than the prestimulus prior condition (M =
20.1°, SD = 4.2°), t(19) = 2.33, p = .031, h2 = .23, BF = 3.02, and
the response prior condition (M = 20.0°, SD = 4.1°), t(19) = 2.66,
p = .016, h2 = .28, BF = 3.10. Furthermore, the prestimulus prior

Figure 4
Experiment 2 Results

Note. a: Error distribution across participants. Positive error (x-axis) indicates a bias towards the prior.
b: Raw errors (°) for the four conditions. These errors were split into (c) bias and (d) precision errors. Red
denotes the control condition, brown denotes the prestimulus prior condition, green denotes the response prior
condition and blue denotes the both priors condition. Error bars indicates one standard error, and the markers
indicate the means across subjects.
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condition did not differ from the response prior condition, t(19) =
.12, p = .90, h2 , .01, BF = .23. We also examined whether add-
ing a prestimulus prior improved performance above and beyond
the response prior: The response prior condition had significantly
larger errors than the both priors condition (M = 18.3°, SD = 3.8°),
t(19) = 2.63, p = .017, h2 = .28, BF = 11.5.

Bias Toward the Prior

The prestimulus prior (M = 8.0°, SD = 5.7°) was significantly
more biased toward the prior than the control condition (M = 4.0°,
SD = 5.6°), t(19) = 4.06, p, .001, h2 = .48, BF = 33.0. The presti-
mulus prior condition was not significantly more or less biased
than the response priors condition (M = 9.6°, SD = 6.4°), t(19) =
1.70, p = .106, h2 = .14, BF = .40. Bias for the response prior
significantly differed from the control condition, t(19) = 5.99,
p , .001, h2 = .65, BF = 66.8, but did not significantly differ from
than the both priors condition (M = 9.0°, SD = 5.9°), t(19) = .79,
p = .438, h2 = .03, BF = .31. Although prestimulus priors alone
are sufficient to cause a prior bias, this might just be reflecting the
influence of the prior at response rather than at perception, because
there is no additional bias from having a prior at prestimulus in
addition to at response.

Precision (Bias-Adjusted)

The control condition (M = 22.8°, SD = 7.5°) was estimated sig-
nificantly less precisely than the prestimulus prior (M = 19.0°,
SD = 3.6°), t(19) = 2.56, p = .019, h2 = .27, BF = 3.12. The presti-
mulus prior condition was associated with marginally less preci-
sion than the response prior condition (M = 17.5°, SD = 3.3°),
t(19) = 2.05, p = .054, h2 = .19, BF = 4.21. The response prior con-
dition had significantly better precision than the control condition,
t(19) = 3.68, p = .002, h2 = .42, BF = 17.0), but did not signifi-
cantly differ from than the both priors condition (M = 16.8°, SD =
2.9°), t(19) = 1.11, p = .281, h2 = .06, BF = .40. As with Experi-
ment 1, there was inconclusive evidence for whether or not having
an additional prestimulus prior affects precision. This emphasizes
the need for a larger dataset.

Discussion

Replicating the previous experiment, having a prior poststimu-
lus, at response, was sufficient to cause Bayesian-like effects: Esti-
mates were both more biased to the prior and also more precise.
Comparing the response prior to the both priors condition showed
at best mixed evidence of additional performance improvements
for the both priors condition. Although there was a small effect in
raw error, this effect disappeared when we attempted to separate
the effect into bias and precision. There is little apparent effect of
adding the prestimulus prior (i.e., of enabling effects at encoding),
even though unlike Experiment 1, participants could no longer just
depend on the response prior in the Both Priors condition. This
finding suggests that the priors have their bulk of their effect on
postperceptual decision-making.
Comparing the prestimulus prior condition to the response prior

condition also supports this hypothesis. Participants were clearly
affected by the prestimulus prior yet the effects of the prestimulus
prior largely resembled the response-prior, mirroring the result of
Bang and Rahnev (2017) on orientations, where the postcue

accounted for the effects of the precue. In this case it suggests that
there is little effect of the prestimulus prior on encoding. However,
the prestimulus prior would still be expected to have an effect dur-
ing the decision stage. The slighter weaker bias and precision
effects compared to the both priors condition could be explained
as participants having to rely on the memory of the prior in the
prestimulus prior condition, whereas it was on-screen in the both
priors condition.

This issue of uneven memory demands for the prestimulus cue
versus the response cue (which did not have to be remembered
since it persisted on-screen) was why the duration of the prestimu-
lus cue was left as self-paced. Because the presentation duration of
the prestimulus priors were self-paced additional analyses were
done to determine how long the participants spent on that screen.
Although the response prior was left on-screen for the whole dura-
tion of the response (ranged from about 2 to 4 s), participants only
spent approximately 400 ms looking at the prestimulus priors.
This raises the concern that the time spent looking at the prior
could be playing a role in our findings, as the duration was unequal
across conditions. This was examined in the next study.

Experiment 3: Timed Versus Self-Paced Priors

Experiment 3 aimed to explore whether manipulating the time
spent looking at the prior played a role and also to equate this
across conditions. To achieve this, we ran the experiment on two
more separate groups of participants. In one group, the prior cue
was, as in Experiments 1 and 2, self-paced. With the other group,
we fixed the duration of the cue, both at prestimulus and at
response, to 1,000 ms.

Method

Two additional groups of twenty participants were recruited
from the same pool. Experiment 3 was identical to Experiment 2
except for two details. First, the prestimulus prior only trials were
dropped (the both priors condition remained), with the three
remaining conditions being equiprobable. Unlike Experiment 1,
the trials were mixed, not blocked. For half the participants (seven
males, 13 females, median age = 20), the duration of the prestimu-
lus prior was fixed at 1 second, as was the duration of the response
prior. The other participants (eight males, 12 females, median
age = 21) had the same stimulus timings as in Experiments 1 and 2.

Results

A graphical depiction of the raw error, bias and precision results
is given in Figure 5b–5d. Figure 5a shows the distribution of
errors, with errors toward the prior coded as positive.

Between Groups: Self-Paced Versus Timed Duration (1 s)

There were no significant differences for any of the matched
conditions across the self-paced and timed groups. For raw error,
there is no significant difference between the control condition of
the self-paced group and the control condition of the timed group,
t(38) = 1.11, p = .275, h2 = .03, BF = .54. There is also no signifi-
cant difference in raw error across groups for the response prior
condition, t(38) = .29, p = .776, h2 , .01, BF = .31, or the both
priors condition, t(38) = .89, p = .380, h2 = .02, BF = .43.
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The lack of between group effects also held true when decom-
posing the raw errors into the bias (all ps . .05) and precision
metrics (all ps . .05). BF analyses (comparing the effect of
response prior [response prior - control, BF = .31] and of both pri-
ors [both prior - control, BF = .31] on bias across the two group
conditions) support the null hypothesis. This subtraction was done
because there might be baseline performance differences across
the two groups of participants. Similar BF analysis on the effect
on precision due to the response and both prior was less conclu-
sive, although there was more support for the null over the alter-
nate hypothesis (BFs = .60 and .49, respectively). These results
suggest that the duration for which the cue is presented did not
significantly modulate the effect of the prior.

Raw Error

To further examine if time spent on prior was playing a role, we
separately analyzed the raw error, bias, and precision for each
timing condition. Critically, we replicate the main findings of the
previous studies and find no divergence between the two prior
durations.

For the self-paced group, the control condition (M = 25.2°,
SD = 7.6°) had significantly larger errors than the response prior
condition (M = 20.3°, SD = 3.1°), t(19) = 3.35, p = .003, h2 = .38,
BF = 15.6). The response prior condition did not significantly
differ in raw error magnitude from the both priors condition (M =
18.6°, SD = 3.3°), t(19) = 1.85, p = .080, h2 = .16, BF = 1.10.

Figure 5
Experiment 3 Results

Note. a: Error distribution across participants for the self-paced group. Positive error (x-axis) indicates a bias towards
the prior. b: Error distribution across participants for the timed group. c: Raw errors (°) for the three conditions, for the
two groups. These errors were split into (d) bias and (e) precision errors. Red denotes the control condition, green
denotes the response prior condition, and blue denotes the both priors condition. Error bars indicates one standard
error, and the markers indicate the means across subjects. The solid line indicates the self-paced priors group and the
dashed line indicate the timed (1 s) priors group.

EXPECTATIONS CHANGE BEHAVIOR 233

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



For the timed group, the control condition (M = 29.3°, SD =
15.0°) had significantly larger errors than the response prior condi-
tion (M = 20.8°, SD = 5.8°), t(19) = 3.12, p = .006, h2 = .35, BF =
12.9. The response prior condition did not significantly differ in
raw error magnitude from the both priors condition (M = 19.8°,
SD = 4.9°), t(19) = 1.22, p = .239, h2 = .08, BF = .36.

Bias Toward the Prior

For the self-paced group, the response prior condition (M =
10.0°, SD = 5.0°) had significantly larger biases than the control
condition (M = 5.0°, SD = 5.4°), t(19) = 4.65, p , .001, h2 = .55,
BF = 207. The response prior condition was not significantly more
or less biased than the both priors condition (M = 11.3°, SD =
5.6°), t(19) = 1.11, p = .279, h2 = .06, BF = .40.
For the timed group, the response prior condition (M = 12.1°,

SD = 6.3°) was also significantly more biased toward the prior
than the control condition (M = 7.0°, SD = 7.2°), t(19) = 4.15, p ,
.001, h2 = .49, BF = 31.5. The response prior condition was again
not significantly more or less biased than the both priors condition
(M = 13.2°, SD = 6.4°), t(19) = 1.55, p = .138, h2 = .12, BF = .65).
Therefore, although the response prior increases bias with respect
to the control condition, there is ambiguous evidence whether the
prestimulus prior has any additional effect on either group.

Precision (Bias-Adjusted)

For the self-paced group, the control condition (M = 24.1°,
SD = 7.6°) was significantly less precise than the response prior
condition (M = 18.3°, SD = 3.0°), t(19) = 3.55, p = .002, h2 = .41,

BF = 34.0. The response prior condition was in turn significantly
less precise than the both priors condition (M = 16.5°, SD = 2.7°),
t(19) = 2.36, p = .029, h2 = .24, BF = 2.12, although the BF test
gave an ambiguous result.

For the timed group, the control condition (M = 27.9°, SD =
13.7°) was significantly less precise than the response prior condi-
tion (M = 17.8°, SD = 5.1°), t(19) = 3.51, p = .002, h2 = .41, BF =
17.1. Precision for the response prior condition was not signifi-
cantly different from the both priors condition (M = 17.0°, SD =
3.9°), t(19) = 1.61, p = .125, h2 = .13, BF = .69, although the BF
test again gave an ambiguous result.

Discussion

Taken as a whole, Experiment 3 suggests that time on prior was
likely not a confounding issue. Furthermore, regardless of the prior
duration, we replicate the previous finding that the bulk of the
effect of priors occurs after encoding. The additional effects of the
prestimulus prior on either bias or precision for either group was
again inconclusive, which highlights the need for a large-N study.

Experiment 4: Dual Mechanisms of Priors?

Although the previous studies convincingly demonstrate that
having priors at response is sufficient to cause a Bayesian-like
effect, the additional effects of having priors available at percep-
tion are still unclear. Chiefly, the previous results could suggest
either there is no additional effect either on bias or precision,
or there is a minor effect only on precision. To distinguish

Table 1
Statistics for Experiment 4 (n = 80)

Error Control PreStim Resp

Raw error
Control — — —

M = 25.1°, SD = 7.0°
PreStim t(79) = 3.49, p = .001, — —

M = 23.4°, SD = 5.9° h2 = .13, BF = 29.69
Resp t(79) = 4.06, p , .001, t(79) = 1.47, p = .146, —

M = 22.6°, SD = 5.3° h2 = .17, BF = 175.34 h2 = .03, BF = 0.34
Both t(79) = 5.50, p , .001, t(79) = 3.46, p = .001, t(79) = 2.23, p = .029,
M = 21.5°, SD = 4.9° h2 = .28, BF = 31,457.99 h2 = .13, BF = 26.98 h2 = .06, BF = 1.26

Bias error
Control — — —

M = 5.2°, SD = 6.0°
PreStim t(79) = 3.70, p , .001, — —

M = 8.2°, SD = 7.5° h2 = .15, BF = 55.56
Resp t(79) = 4.27, p , .001, t(79) = 0.02, p = .981, —

M = 8.2°, SD = 6.9° h2 = .19, BF = 357.06 h2 , .01, BF = 0.12
Both t(79) = 5.42, p , .001, t(79) = 1.16, p = .250, t(79) = 1.15, p = .255,
M = 9.0°, SD = 5.9° h2 = .27, BF = 23,044.93 h2 = .02, BF = 0.23 h2 = .02, BF = 0.23

Precision error
Control — — —

M = 24.8°, SD = 6.8°
PreStim t(79) = 5.25, p , .001, — —

M = 21.7°, SD = 5.7° h2 = .26, BF = 11,799.97
Resp t(79) = 5.29, p , .001, t(79) = 0.70, p = .487, —

M = 21.3°, SD = 5.7° h2 = .26, BF = 14,016.20 h2 = .01, BF = 0.16
Both t(79) = 7.25, p , .001, t(79) = 3.55, p = .001, t(79) = 2.84, p = .006,
M = 19.9°, SD = 4.8° h2 = .40, BF = 40594940 h2 = .14, BF = 35.94 h2 = .09, BF = 5.05

Note. PreStim = prestimulus; Resp = response; BF = Bayes factors. BF . 3 suggests evidence for the alternate hypothesis, whereas BF , .33 suggests
evidence for the null.
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between these possibilities, we initially combined the data from
Experiments 1, 2, and 3 (80 data sets). Although there was no dif-
ference in terms of bias between the both priors condition (M =
10.8°, SD = 6.2°) and the response prior condition (M = 10.2°,
SD = 6.0°), t(79) = 1.31, p = .195, h2 = .02, BF = .28, there was
one for precision: Both priors condition (M = 16.6°, SD = 3.2°)
was more precise than the response prior condition (M = 17.8°,
SD = 3.8°), t(79) = 3.61, p , .001, h2 = .14, BF = 42.23. This
would suggest that although priors at decision produce large bene-
fits on precision and bias, that the benefit of a response prior is
limited only to an effect on response precision.
This aggregate analysis has the disadvantage of combining data

across experiments that differ in methodological details. There-
fore, we conducted a preregistered (https://osf.io/d4xjk) study of
80 participants using the design of Experiment 2. We chose to rep-
licate Experiment 2 as this was the study that best emphasized
the importance of the prestimulus prior. In Experiments 1 and 3,
participants could potentially ignore the prestimulus prior since
there was no condition in which the prior was not shown during
the decision stage.

Method

This replication experiment was conducted online via Prolific
(https://prolific.co), with the experiment being coded in HTML
canvas/Javascript instead of Matlab/Psychophysics Toolbox. The
stimuli colors, sizes and timings were kept the same as the original
experiment, assuming participants were using a set-up similar to
what we used in the lab (e.g., apparent stimulus sizes might vary
depending on how far participants situate themselves from the
screen, participant screen calibration might affect the relative
luminance of the colors used, etc.). Participants were credited 5.20
GBP per hour, and the maximum bonus was 5GBP. We also
removed the need for the confidence arc judgements. We ran this
online replication on 80 participants (29 female, 69 right-handed,
median age = 23 years old). This N was prechosen because a
power analysis on the previous data suggested that 80 participants
would give us an 80% power to detect the small additional effect
of prestimulus priors on precision. Further, 80 participants were
sufficient to show this effect strongly in the aggregate analysis on
Experiments 1–3.

Results

For the sake of brevity, below we report the comparisons that
matters the most. For the interested, Table 1 has the t-statistics and
BFs for all possible comparisons.

Prestimulus Priors Additionally Increase Precision

The both priors condition (M = 19.9°, SD = 4.8°) was estimated
significantly more precisely than the response prior condition (M =
21.3°, SD = 5.7°), t(79) = 2.84, p = .006, h2 = .09. In addition,
BF analysis on this data returned a factor of 5.05, which is evi-
dence in favor of the alternate hypothesis.

Prestimulus Priors Do Not Additionally Increase Bias

We ran the identical analyses on bias, where we observe no
significant effect between the both priors condition (M = 9.0°,
SD = 5.9°) and the response prior condition (M = 8.2°, SD = 6.9°),

t(79) = 1.15, p = .255, h2 = .02. This was not because of a lack of
experimental power: BF analysis on this data returned a factor
of .23, suggesting that the available data is evidence in favor of
the null hypothesis. Therefore, Experiment 4 supports the claim
that prestimulus priors increases precision (BF = 5.05) while
not affecting bias (BF = .23). Note that this pattern is also consist-
ent with the aggregate data combining across Experiments 1–3
(BFprecision = 42.23, BFbias = .28).

Rather than solely relying on just incoming data (the stimuli) or
just the available prior, an optimal Bayesian observer is one that
integrates both pieces of information. Given the assumption
that each participant has a fixed uncertainty width across trials,
that they fully internalized the prior width/mu per trial, and that
they integrate this information in a Bayesian manner, we can esti-
mate what the average bias/precision across trials should be (see
online supplemental materials for more details). What is clear
from Figure 6e is that an optimal observer tends to be increasingly
biased toward the prior as the distance from the prior to the target
increases. This is logical, since the further away from the prior the
actual target is, the greater is the distance it can be pulled toward
the prior without overshooting it. Likewise, a target that is already
at the prior, by definition cannot be biased toward the prior (any
estimation error in this case is going to cause it to be biased away
from the prior). Note that this correlation between bias and distance
from prior will also occur if participants only respond with the
(center of the) prior. However, this hypothetical scenario overpre-
dicts the extent of the bias, and also predicts that all the effects will
be on bias. Clearly, participants were not adopting this strategy.

For both bias and precision there are clear differences between the
prior conditions and control conditions, showing that participants are
using the prior. Of interest is that for bias, the both priors and
response prior condition showed similar trends, where the further the
(color) distance from the prior, the greater is the bias toward the prior
(which is exactly what is predicted by the optimal Bayesian fit).
Also, of note is that the participant performance is quite close to that
of this Bayesian optimal, suggesting that participants were behaving
in a Bayesian-like way. The benefit of having the prior available
prestimulus (and at response) did not cause participants to be over-
Bayesian or overutilize the prior. That there is a consistent prior bias
observed in the control condition, might also suggest that participants
could sometimes decipher and integrate the prior even when the prior
was not explicitly communicated (note that even in the Control con-
dition, the targets were drawn from a 30° SD Gaussian prior). Alter-
natively, it could be that people are biased toward the ensemble
mean (Brady & Alvarez, 2011; Chetverikov et al., 2016; Dakin &
Watt, 1997) rather than the having integrated the prior per se. Impor-
tantly, the nonrandom nature of the stimuli were equivalent across
conditions.

Of greater interest is that, for precision, there is a clear
divergence between just having response priors versus adding a
prestimulus prior (the difference between the green and blue
lines). Furthermore, the improvement in precision appears to hap-
pen regardless of the stimulus-to-prior distance. Unlike bias effects
which increase with stimulus-to-prior distance, the first bin already
shows this difference in precision significantly, t(79) = 2.49, p =
.015, BF = 3.92, and this difference remains at Bin 4, t(79) = 3.27,
p = .002, BF = 15.95. The implication here is that the priors, if
they are available before or at perception, improves the encoding
precision not only of the prior, but also of colors further away
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from the prior. This also suggests that the additional effect here is
not due to something like color/repetition priming (Kristjánsson &
Campana, 2010; Shurygina et al., 2019), because if that were the
case, the colors further away from the prior should be less
expected and primed to a lesser extent (see Figure 2 for an exam-
ple of the cue). Perceptual history also tends to result in biases
away from what is shown (i.e., biases away from the prior;
Fritsche et al., 2017), which was not observed: Addition of the
prestimulus prior has no apparent effect on bias.

Discussion

The data highlights that there are two possible mechanisms for
the effect of priors. First, even without the opportunity to affect
encoding, priors will affect perceptual decision-making by biasing
responses toward the prior, while also improving the precision or
limiting the spread of the responses. When further allowed to
interact with perceptual encoding, priors then have a small addi-
tional effect on precision, without a corresponding effect on bias.

Figure 6
Experiment 4 is a Replication of Experiment 2 (n = 80)

Note. a: Error distribution across participants. Positive error (x-axis) indicates a bias towards the prior.
c: mean bias and (d) mean precision errors. e: bias across distance from prior and (f) precision errors across
distance from prior. Red denotes the control condition, brown denotes the pre-stimulus prior condition, green
denotes the response prior condition, and blue denotes the both priors condition. Mustard denotes the Optimal
Bayesian given the participants’ errors in the control condition (see the online supplemental materials). The
gray line represents the situation where participants only responds with the (center of the prior). The bins are
in intervals of 10° of distance from prior. The bins, from the first to the fifth, contains 28.5%, 25.3%, 20.1%,
14.3%, and 9.1% of the data, respectively. Error bars indicate one standard error, and the markers indicate the
means across subjects (marker sizes indicate relative proportion of data going into those bins).
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That the optimal Bayesian observer closely matched the partici-
pant trends is not necessarily indicating that participants are being
Bayesian optimal. It could be the case that the process leading to
integration of the prior is less than optimal, but they happened
to compensate for this by underestimating the width of the prior
(narrower prior widths are predicted to cause bigger effects of
priors). That people are less than optimal integrators could be
why the ‘both priors’ case seems nearer to the optimal than the
response prior case is. However, as these effects are not necessar-
ily Bayesian, but merely compatible with mechanisms capable of
mimicking Bayesian effects (Bowers & Davis, 2012), we can con-
clude only that the effect of priors, particularly at the response
stage, are Bayesian-like in the effects that are produced. In fact,
the possibility that people are using the priors twice, at perception
and again at decision-making, makes it difficult to reconcile with a
pure Bayesian account of human behavior.
One could argue that the prestimulus priors are having an effect

only at decision and not encoding. We agree that it is dangerous to
assume that a prior shown at perception can only have an effect
during perception. Participants could be remembering the prior
and accessing this information during response. However, even
acknowledging the possibility, the results still demonstrate dissoci-
able effects of priors presented at distinct stages of a task. Further,
the scenario that the perceptual prior is only affecting decision-
making is unlikely for several reasons. First, we manipulated prior
duration in Experiment 3 and observed no effect, suggesting that
more time with the prior is not sufficient to produce noticeable
effects on decision-making. Further, if there were to be an effect
of longer/redundant cue presentation, we would expect it to be just
an exaggerated effect of the effect of response priors: Both preci-
sion and bias should be affected. Alternatively, such presentation
could lead people to be overly reliant on the prior, causing
increased bias without necessarily an associated increase in preci-
sion. Neither of these predict a case of increased precision without
an associated increase in bias. Finally, there is evidence from other
lines of work for perceptual effects from nonrandom stimulus
properties (e.g,, Jabar et al., 2017). Therefore, the evidence is at
least suggestive that there is something specific about the predeci-
sional timing of the prior cue that is leading to its unique effects.
Thus far we have only considered the case where the prior is

changing from trial to trial. It could perhaps be the case that the
effect that priors have on perception requires time to develop, that
that is why the effects thus far has mainly been driven by the pri-
or’s influence on response. Thus, we ran Experiment 5, comparing
fixed versus constantly changing priors to determine whether there
are differences in how the two types of priors affect behavior.

Experiment 5: What If Priors Were Fixed?

We ran another version of the experiment on a new set of
(in-lab) participants. Each participant went through three blocks
(order was counterbalanced). In one block the prior was, as with
the previous experiments, changing from trial to trial. In the other
block, the prior was fixed. The final block served as a control con-
dition. If an effect on encoding does require time to develop, then
there should be differences in error when comparing between fixed
priors and changing priors. Particularly, the fixed prior condition
should result in greater prior biases and/or greater precision than
the changing priors condition.

Method

Sixteen additional participants (seven male, nine female, me-
dian age = 21) were recruited from the same pool. This experiment
consisted of three blocks, similar to Experiment 1. There was the
control block where stimuli on each trial were drawn from an
unadvertised prior that was randomly chosen. There was a change
block where the prior was advertised and changed on each trial.
Finally, there was a fixed block where the prior was advertised,
but remained consistent across the 100 trials in the block (this
fixed prior was chosen at random per participant). None of the tri-
als had a prestimulus prior since, in the fixed prior block, the cue
given in the response/feedback phase of the preceding trial already
provided the same information a prestimulus cue would have.
Hence, when participants reset their mouse to the central position
to begin the next trial, the cue disappeared, followed by a 500-ms
central fixation, followed by the 100-ms stimulus duration. The
details of this experiment were otherwise identical to experiment
1. Block order was counterbalanced across participants.

Results

A graphical depiction of the raw error, bias and precision results
is given in Figure 7b–7d. Figure 7e shows how the three measures
change over time on task.

Raw Error

The control condition (no advertised prior, M = 22.1°, SD =
5.9°) had significantly larger errors than the changing priors
condition (M = 16.8°, SD = 3.0°), t(15) = 3.46, p = .004, h2 = .46,
BF = 18.1, and the fixed prior condition (M = 16.4°, SD = 4.9°),
t(15) = 5.11, p , .001, h2 = .65, BF = 458). The changing priors
condition did not differ in raw error magnitude from the fixed prior
condition, t(15) = .31, p = .760, h2 , .01, BF = .26).

Bias Toward the Prior

The changing priors condition (M = 6.3°, SD = 4.5°) had signifi-
cantly more bias toward the prior than the control condition (M =
�.6°, SD = 4.2°), t(15) = 4.09, p , .001, h2 = .54, BF = 64.0),
and the changing priors condition did not differ in bias from the
fixed prior condition (M = 7.8°, SD = 6.0°), t(15) = 1.02, p = .321,
h2 = .07, BF = .31), which met the BF , .33 criteria we adopted
for this study.

Precision (Bias-Adjusted)

The control condition (M = 21.8°, SD = 6.1°) was estimated
significantly less precisely than the changing priors condition (M =
15.6°, SD = 3.4°), t(15) = 3.99, p = .001, h2 = .53, BF = 33.8, and
the precision for the changing priors condition did not significantly
differ from the fixed prior condition (M = 15.4°, SD = 4.9°),
t(15) = .15, p = .883, h2 , .01, BF = .28.

Effects Across Trials

Here we tested a fixed versus changing prior to see if having a
constant prior produces expectation effects that are greater than
changing priors. Another way of probing this question is to see if
having a fixed prior produced expectation effects that develop
over time. To investigate this, we separated the fixed prior blocks
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into 20-trial bins and examined performance changes over time
(Figure 7e). For the raw errors, there was no significant difference
between any of the bins (all ps . .05), for example trials 1–20 had
on average the same error magnitude as trials 81–100. This was
also true for the precision and bias measures (all ps . .05).
In other words, there did not appear to be any measurable effect of
time when priors were kept constant. This was true regardless of
block order (e.g., whether the fixed prior block was done before
the changing priors block or vice-versa).

Discussion

Our previous studies used priors that changed on a per trial
basis. In contrast, some researchers use priors/expectations that are
consistent across many trials (e.g., Jabar et al., 2017; Zhou et al.,
2020). Are there major differences in the effects of fixed priors,
particularly in regard to effects during perception? If a prior was
fixed, alterations to the perceptual system could gradually accrue

occur over time, causing greater perceptual effects. Alternatively,
it could be that past experience needs to be accumulated to result
in an attentional set (Leber & Egeth, 2006). However, Experiment
5 demonstrated that having a fixed prior did little to change the
effect. We should note that while the BF analyses between the
changing and fixed prior trials supported the null (for both bias
and precision effects), we still view that Experiment 5 is likely
underpowered for concluding whether fixing versus changing the
prior over trials has zero effect. What we think this does demon-
strate though, is that the effects observed in Experiments 1–4 are
unlikely to have been greatly altered had we used a fixed prior.

The lack of effects here might appear contradictory to previous
evidence of perceptual learning across blocks (Jabar & Anderson,
2015; Jabar et al., 2017) and that probability learning in general
occurs relatively quickly (Hon & Jabar, 2018; Hon et al., 2013).
Of note though is that for these studies, participants were not
explicitly informed about the distributions. What this current lack
of learning-related effects is suggesting might be that being

Figure 7
Experiment 5 Results

Note. a: Error distribution across participants. Positive error (x-axis) indicates a bias towards the prior. b:
Raw errors (°) for the three conditions. These errors were split into (c) bias and (d) precision errors. Red
denotes the control condition, green denotes the changing priors condition, and blue denotes the fixed prior
condition. Error bars indicates one standard error, and the markers indicate the means across subjects. e: Error
measures for the fixed prior condition broken down into 20-trial segments.
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explicitly given priors precludes the need to acquire the informa-
tion piecemeal. A single exposure to the prior cue might be suffi-
cient to internalize the probability information (or at least, mostly
internalize it).

General Discussion

Expectations about the environment play a large role in shaping
behavior. There has been considerable research demonstrating
how establishing priors changes the way participants respond in a
wide range of tasks (Summerfield & de Lange, 2014). What is less
well-understood is the underlying mechanism of how these priors
influence behavior (and during which stage of processing). One
critical question is whether these priors change the perceptual/
memory representations that people form or just change how
decisions are made based on the encoded representations. In most
studies, priors are available at both perception and decision-
making, making this critical question impossible to untangle.
The present study manipulated when priors were presented.

Priors given after encoding has occurred would only have the
opportunity to affect decision-making, yet when a prior is pre-
sented during the response and decision stage (after perception)
we see traditional Bayesian-like effects where responses become
more certain, biased toward an expectation, and the amount of bias
depends on the deviation from the expected value, suggesting that
people are incorporating the two pieces of information in the
response. Specifically, the magnitude of the bias shift increases
with increased stimulus-prior distance and is in line with the
predictions of an optimal Bayesian model (Geisler, 2011). This is
also consistent with decision processes acting in a Bayesian
fashion when making inferences about the environment from
perceptual information (e.g., Fougnie et al., 2015; Maloney &
Mamassian, 2009; Mamassian & Landy, 2001; Norton et al., 2019).
In contrast, if the prior is additionally presented during percep-

tual processing, there is an increase in response precision that
suggests improved encoding of information. We use the term
‘encoding’ here to be agnostic on whether the effect is happening
at perception or during encoding of the information into working
memory, which are difficult to disentangle. Both perception and
working memory likely rely on similar representations, as there is
considerable evidence that working memory representations are
perceptual representations that are maintained by internal attention
(Chun, 2011; Courtney et al., 1997; Kiyonaga & Egner, 2013).
However, there could be additional selection between perception
and working memory. Representations might be biased against
perceptual distractors (Rutman et al., 2010; Sreenivasan & Jha,
2007), and prestimulus expectations/priors conceivably could aid
in this process by defining the target set (e.g., what targets to main-
tain, and what distractors to suppress). However, this would
predict that target colors further away from the cued color should
suffer some performance cost. Instead, the prestimulus cue
increases precision in a way that showed no evidence of being
dependent on the stimulus’ value relative to the prior, suggesting
that a bias from distractors account cannot explain the findings.
One possible mechanism for the additional effect of prestimulus

priors is feature-based attention, which involves the selective gain
or tuning of population responses (Ling et al., 2009) coding for
that target feature. Single-unit studies corroborate this hypothesis,
as enhanced neural response and synchrony are seen whenever a

stimulus matched a target feature (Bichot et al., 2005). Increased
neural firing due to feature-based attention can be seen even in
regions with no stimuli (Serences & Boynton, 2007). Any increase
in neural sensitivity or prefiring will likely improve how well the
stimulus end up being encoded, particularly when the stimulus du-
ration is limited (in this case 100ms). Alternatively, changes in
perceptual precision also could be explained in terms of more effi-
cient predictive coding (de Lange et al., 2018). This account posits
less recurrent processing/feedback (O’Brien & Raymond, 2012)
due to the fact that knowledge of the prior minimizes the mismatch
between expectations and reality. This can boost performance if
the time to process the stimulus is limited, by increasing the effi-
ciency of stimulus processing. Future work is necessary to adjudi-
cate between possible accounts, and to explore how these effects
differ from effects during decision-making.

Do the present findings help us interpret the discrepant findings
across studies? The Bayesian-like effect on decision-making
accounts for the bulk of the influence of expectations, as compared
to the effect on encoding. That the encoding effect is small is
likely why some studies fail to find evidence for cuing/expectation
effects on sensory processing (Bang & Rahnev, 2017; Rungratsa-
meetaweemana et al., 2018), whereas others find effects (Kok et
al., 2012; Zhou et al., 2020). Bootstrap analyses suggested that
about 80 participants were required to show this effect reliably.
Another possible explanation for discrepant findings is due to
methodological differences. For example, the Bang and Rahnev
study used cues that indicated the likely response and may have
increased effects on decision-making and reduced encoding effects
(the cue was only indirectly informative of stimulus identity).
Thus, to observe encoding effects it may be necessary to directly
influence participants’ expectations of stimulus identity. Finally,
while the lack of an effect of expectations on early sensory proc-
essing-related ERPs (Rungratsameetaweemana et al., 2018) could
also be due to the effect at encoding being very small, another
argument could be made about the choice of ERP components; the
visual negativity (peaks 150-300ms poststimulus onset) and pre-
peak centro-parietal positive potential (200–750 ms poststimulus
onset) used are rather late components. In contrast, the Jabar et al.
(2017) study on visual evoked potentials found that probability
reliably affected the C1 component (peaks 50–100 ms poststimu-
lus), without observable differences in the later P1/N1 compo-
nents. Later components are more likely affected by attentional or
recurrent feedback (Di Russo et al., 2003), which may mask earlier
differences in sensory processing (especially if they were small to
begin with).

Another important question relevant to the present work is when
explicit awareness of priors is necessary (Vadillo et al., 2020). In
the present case the priors were explicitly advertised to partici-
pants, but there is evidence that stimulus probabilities can affect
the visual cortex without participants being able to explicitly state
what the distribution is (Jabar et al., 2017). This suggests that
implicitly-learned priors can at least affect perceptual encoding. If
attention capture can influence color reports without participant
awareness (Chen et al., 2019), explicitly shown priors could possi-
bly have similar effects. One suggestion is that explicit awareness
is necessary for top–down expectations to have an effect, but not
for the generation of bottom-up stimulus-evoked prediction errors
(Meijs et al., 2018). Future work is necessary to determine whether
explicit awareness of priors is necessary for the Bayesian-like
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effects that arise during decision stages. Concretely, could esti-
mates still be biased toward the prior in cases where participants
are unable to explicitly state what the prior is?
The current study provides some answers toward the role of

priors, but at the same time, raises other questions. Nevertheless,
the insights from these studies should help integrate models of per-
ception and decision-making, as well as constrain theory on how
humans use expectations to interact with the environment. With
fields like behavioral/neuro economics increasingly incorporating
Bayesian frameworks to predict how human beings make deci-
sions (Bach, 2016; Chater, 2015; Gilboa, 2015), it becomes impor-
tant to understand how we leverage our acquired information to
compensate for noisy sensory inputs.
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